
SUPRA
PROGRAMMING
PLATFORM

Pull your code from the Embedded Firmware Library

ADC
SDPWM

LEDs
MUX
LCDTCP/IP

I/O

 From BASIC to Python l Embedded Firmware Library l 500 ppm
LCR Meter Part 3 l FPGA Programming l Linux Board Extension

OTA Triangular Wave Gen l BaroStick PCB Soldering Pitfalls

Ceramic C’s Off the Mark 1963 Tube PSU The Invisible User Interface

US $ 9.00 - Canada $ 10.00

www.elektor-magazine.com

May 2013

magazine

State Diagrams

www.elektor-magazine.com | May 2013 | 53

lets you see what code is executed when and
whether the machine is behaving as it should.
In the next step, when the machine is running
on a real device, it is very useful to be able to
observe its operation. In the simplest case this
might take the form of a simple textual display
of the current state and incoming events.

In the document at [1] there is an
example that shows how you can write your own
function to provide a tracing feature like this.
Also, a second example shows how the tiny
ASURO mobile robot [2] can be equipped with a
bit of intelligence.

If you are interested in learning more about
state diagrams, you can install a UML (Unified
Modeling Language [3]) tool. In particular, the
open-source tool ARGO UML [4] is recommended.
Simple experiments with automatic code genera-
tion can be carried out using the demo version
of Sinelabore [5].

(091051)

Internet Links

[1] www.elektor.com/091051

[2] www.youtube.com/watch?v=pIpuR_LlwY4

[3] http://en.wikipedia.org/wiki/
Unified_Modeling_Language

[4] http://argouml.tigris.org

[5] www.sinelabore.com

few rules need to be obeyed when creating the
design. These include the following.

• States must have unique names.
• State names must be valid identifiers in the

target programming language. For exam-
ple, in C, spaces are not allowed in variable
names, and neither may they begin with a
digit.

• Actions must either be simple function calls
or valid program code.

• Guards must always evaluate to ‘true’ or
‘false’.

Many design rules can be checked automatically
by the code generator. Furthermore, other checks
can also be carried out, such as the following.

• Are all states reachable? Are there any ‘dead
ends’?

• Are initial states defined wherever they are
needed?

• Is a trigger specified for each transition?

These checks allow various infelicities in the
design to be detected quickly and automatically.
Moreover, the code generator will often come with
additional features that help with debugging and
analyzing the state machine.

Simulation and debugging
When developing a state machine it is very useful
to be able to simulate the model. State transi-
tions are triggered by simulated events, and this

PermanentlyOff

PermanentlyOff

PermanentlyOn

PermanentlyOn

TwilightMode

TwilightMode

WaitForTwilight

WaitForTwilight

TwilightDetected

TwilightDetected

PersonDetected

PersonDetected

WaitFor
PersonGone

WaitForPersonGone

Init

Init

FINAL_0

FINAL_0

evModeChange
[mode==ON]

evModeChange
[mode==AUTO]

evModeChange
[mode==OFF]

evModeChange
[mode==OFF]

evModeChange
[mode==ON]

evModeChange
[mode==AUTO]

evNight

evDay

evNoPerson
evPerson
[delayCnt<PD_DELAY]

evPerson
[delayCnt==PD_DELAY]

[delayCnt==ON_DELAY]

evNoPerson

evModeChange
[mode==ON && retVal==0]

evModeChange
[mode==AUTO && retVal==0]

evModeChange[else]

091051 - 13

Figure 3.
Presentation of the state
diagram of Figure 2 as a
state table (extract).

