NORME **INTERNATIONALE** INTERNATIONAL **STANDARD** **CEI IEC** 61951-2 > Première édition. First edition 2001-01 Accumulateurs alcalins et autres accumulateurs à électrolyte non acide -Accumulateurs individuels portables étanches - Partie 2: Nickel-métal hydrure Secondary cells and batteries containing alkaline or other non-acid electrolytes -Portable sealed rechargeable single cells - Part 2: Nickel-metal hydride ganeréter et prémiul Reference number CEMEC 61951-2:2001 ### Numérotation des publications Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 50034-1. ### Editions consolidées Les versions consolidées de certaines pub lositons de la CEI Incorporant les amendements sont disponibles. Par exemple, les numéros d'ádition 1.6, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2. ### Informations supplémentaires sur les publications de la CEI Le contenu technique des publications de la CEI est constamment revu par la CEI afin du'il reflète l'étai actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions amendements et corrigende. Des informations eur les sujets à l'étude et l'avancement des travaux entrepris par le comité c'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de: ### Site web de la CEI (www.lec.ch) ### Catalogue des publications de la CEI Le estalogue en l'gne sur le site web de la CEI (www. ce ch/catig f.htm) vous permet de faire des recherches en utilisant de nombreux chières, comprenant des recherches textuelles, par comité d'âtudes ou date de publication. Des informations ni ligne sont égatement disponibles sur les nouvelles publications, es publications remplacées ou reprées, sinal que sur les corrigends. ### IEC Just Published Ce résumé des demières publications parues (<u>www.lec.ch/JP.htm</u>) est aussi disponible par courrier électronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations. ### Service clients Si vous avez des cuestions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients: Fmail: <u>gustserv@iec.ch</u> Tél: +41 22 919 02 11 Fax: +41 22 919 03 00 ### Publication numbering As from 1 January 1997 all IEC publications are Issued with a designation in the 90000 series. For example, IEC 34-1 is now referred to as IEC 80094-1. ### Consolidated editions The IEC is now publishing consolidated versions of its publications. For example, addition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2. ### Further information on IEC publications The technical content of JEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogus of publications (see below) in addition to new editions, americanents and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following: ### IEC Wab Site (www.lec.ch) ### Catalogue of IEC publications The on-line catalogue on I've IEC web site (www.jec.ch/catig-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. Online information is also eval able on recently issued publications, withdrawn and replaced publications, as well as corrigered. ### IEC Just Published This summary of recently issued publications (www.iec.ch/JP.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information. ### Customer Service Centre If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre: Errail: <u>custserv@iec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00 # NORME INTERNATIONALE INTERNATIONAL STANDARD CEI IEC 61951-2 > Première édition First edition 2001-01 Accumulateurs alcalins et autres accumulateurs à électrolyte non acide -Accumulateurs individuels portables étanches – Partie 2: Nickel-métal hydrure Secondary cells and batteries containing alkaline or other non-acid electrolytes -Portable sealed rechargeable single cells – Part 2: Nickel-metal hydride 🧠 IEC 2001 Droits de reproduction réservés — Copyright - all rights reserved utilisão sous cuelque forme que de soit en par avour procédé, ... électranic de lau mécanique, y compris la photocopie et les microfilms, sans l'accordischi de l'adigur. Accure partie to cotte publication ne gout être reproduite ni ... No port of this publication may be o-publicant in utilized in any form or by any meens, electronic or magnanical, including photocopying and microtim, without permission in withing from the publishes. 3, rue de Varembé, Geneva, Switzerland International Exectrotechnical Commission. Telefax: +41 22 919 0300 e-mail: inmail@iec.ch TEC web site. http://www.ec.ch ____· Commission Electrotechnique Internationale International Electrotechnical Commission Мендународная Элентротехническая Номиссия CODE PRIX PRICE CODE Pour prix, you cate/page en vioueur Acriarica, see current ceralogue -2- 61951-2 @ CEl:2001 ### SOMMAIRE | | | | Радве | |-----|--------|--|-------| | А١ | ANT- | PROPOS | 6 | | ίΝ | TROD | UCTION | 8 | | | | | | | Art | cles | | | | 1 | Gén | eralités | ٢0 | | | 1.1 | Domaine d'application | 10 | | | 1.2 | Références rormatives | 10 | | | 1.3 | Définitions | 10 | | | 1,4 | Tolérances de mesure au niveau des paramètres | 12 | | 2 | Dési | gnation et marquage | 14 | | | 2.1 | Désignation des éléments | | | | | 2.1.1 Petits éléments parallélépipédiques | 14 | | | | 2.1.2 Eléments individuels cylindriques | | | | | 2.1.3 Fléments boulons | | | | 2.2 | Sorties électriques des éléments | | | | 2.3 | Marquage | 16 | | | | 2.3.1 Petits éléments parallélépipédiques et éléments cylindriques | | | | | 2.3.2 Eléments boutons | 16 | | 3 | Dime | nsions | 18 | | | 3.1 | Potits éléments parallélépipédiques et éléments cylindriques | 18 | | | 3.2 | Eléments boutons | | | 4 | Essa | is électriques. | | | | 4.1 | Mode de charge pour les essais | | | | 4.2 | Carectéristiques de décharge | | | | | 4.2.1 Caractéristiques de décharge à 20 °C | | | | | 4.2.2 Caraciénstiques de décharge à 0 °C | | | | 4.3 | Conservation de charge | | | | 4.4 | Endurance en cycles. | | | | 4.5 | Aptitude à la charge à tension constante. | | | | 4.6 | Surcharge | | | | 4.7 | Fonctionnement du dispositif de sécurité | | | | 4.8 | Stockage | | | | 4.9 | Résistance interne | | | | | 4.9.1 Mesure de la résistance interne en courant atternatif, | | | | | 4.9.2 Mesure de la résistance interne en courant continu | | | 5 | Ēssa | is mécaniques | | | 6 | | Itions d'homologation et de réception | | | • | 6.1 | Homologation | | | | 6.2 | Conditions de réception | | | | 0.2 | Continuons de reception | 34 | | Bib | lioura | ohle | .36 | 61951-2 @ (EC:2001 -3- ### CONTENTS | | | rat | | |------|--------|--|----| | FOR | REWO | RD, , , , , | 7 | | INT | RÓDU | ICTION | 9 | | | | • | | | Clau | | | | | 1 | | ral | | | | 1.1 | Scope1 | | | | 1.2 | Normative references 1 | | | | 1.3 | Definitions1 | | | | 1.4 | Parameter measurement tolerances1 | _ | | 2 | Desig | nation and marking 1 | 5 | | | 2.1 | Cell designation | 5 | | | | 2.1.1 Small prismatic cells1 | 15 | | | | 2.1.2 Cylindrical cells | 15 | | | | 2.1.3 Button cella | 15 | | | 2.2 | Cell termination | 15 | | | 2.3 | Marking | 17 | | | | 2.3.1 Small prismatic cells and cylindrical cells | 17 | | | | 2.3.2 Button cells | 17 | | 3 | Dime | nsions | 19 | | | 3.1 | Small prismatic cells and cylindrical cells | 19 | | | 3.2 | Button cells | | | 4 | Elect | rical tests | 23 | | | 4.1 | Charging procedure for test purposes | | | | 4.2 | Discharge performance | | | | 1.2 | 4.2.1 Discharge performance at 20 °C | | | | | 4.2.2 Discharge performance at 0 °C | | | | 4.3 | Charge (capacity) retention | | | | 4.4 | Endurance in cycles | | | | 4.5 | Charge acceptance at constant voltage | | | | 4.6 | Overcharge | | | | 4.7 | Safety device operation | | | | 4.8 | Storage | | | | 4.9 | Internal resistance | | | | 7,5 | 4.9.1 Measurement of the internal a.c. resistance | | | | | 4.9.2 Measurement of the internal d.c. resistance. | | | 5 | Mech | nanical tests. | | | Ξ. | | | | | 6 | | litions for approval and acceptance | | | | 6.1 | Type approval | | | | 6.2 | Batch acceptance | 35 | | | | | | | Rit | diogra | phy | 37 | ### STD.IEC 61951-2-ENGL 2001 🛤 4844891 8750372 494 🖿 -4- 61951-2 ⊗ CEI:2001 | | Pages | |---|-------| | Figure 1 – Eléments cylindriques gainés | 18 | | Figure 2 – Petits éléments parallélépipédiques gainés | 18 | | Figure 3 - Eléments boutons | | | Tableau 1 – Dimensions des petits éléments parallélépipédiques gainés | 18 | | Tableau 2 - Dimensions des éléments cylindriques gainés | | | Tableau 3 Dimensions des éléments houtons | | | Tableau 4 – Caractéristiques de décharge à 20 °C des petits éléments parallélépipédiques et des éléments cylindriques | | | Tableau 5 Caractéristiques de décharge à 20 °C des éléments boutons | 24 | | Tableau 6 Caractéristiques de décharge à 0 °C des petits éléments parallélépipédiques et des
éléments cylindriques | 24 | | Tableau 7 - Caractéristiques de décharge à 0 °C des éléments boulons | 24 | | Tableau B - Endurance en cycles | .,26 | | Tableau 9 - Séquence d'essais pour l'homologation | | | Tableau 10 - Séquence des essais conseillés pour la réception | 34 | ### ZTD.IEC 61951-2-ENGL 2001 = 4844891 0750373 320 == 61951-2 @ IEC:2001 **5** - | | Page | |---|------| | Figure 1 – Jacketed cylindrical cells | 19 | | Figure 2 – Jacketed small prismatic cells | 19 | | Figure 3 – Button cells | 21 | | | | | Table 1 – Dimensions of jacketed small prismatic cells | 19 | | Table 2 – Dimensions of jacketed cylindrical cells | 21 | | Table 3 – Dimensions of button cells | 21 | | Table 4 – Discharge performance at 20 °C for small prismatic cells and cylindrical cells. | 72 | | Table 5 – Discharge performance at 20 °C for buttor cells | | | Table 6 – Discharge performance at 0 °C for small prismatic cells and cylindrical cells | | | Table 7 - Discharge performance at 0 °C for button cells | 25 | | Table 8 – Endurance in cycles | 27 | | Table 9 – Sequence of tests for type approval | 33 | | Table 10 - Recommended test sequence for batch acceptance | | 61951-2 © CEI:2001 ### COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE ### ACCUMULATEURS ALCALINS ET AUTRES ACCUMULATEURS A ELECTROLYTE NON ACIDE --ACCUMULATEURS INDIVIDUELS PORTABLES ETANCHES -- ### Partie 2: Nickel-métal hydrure ### AVANT-PROPOS - 1) La CEI (Commission Électrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'electronité et de l'électronique. A cet effet, la CEI, entre autres activités, public des Normes Internationales. Leur élaboration est confiée à des comités d'études, aux travaux dequele tout Comité national Intéreséé par le sujet traité cout participer. Les organisations Internationales, gouvernamentales et non gouvernamentales, en lisison avec a CEI, participent àgalament aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par acconditions des deux organisations. - 2) Les décisions ou accords officielle de le CE; concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Camités parioneux intéressés sont représentés cans chaque comité d'études. - 3) Les documents produits se présentent sous la forme de recommandations internationales. Le sont publiés comme normes, spécifications techniques, rapports techniques ou guides et agréés comme les par les Comités nationaux. - 4) Does le but d'encourager l'unification internationale, les Comités nationalex de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière. - 5) La CEI nia fixé aucune procédure concernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matériel est déclaré conforme à l'una de sas normes. - 6) L'attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. Le CEI ne seurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas evoir signalé leur existence. La Norme internationale CEI 61951-2 a été établie par le sous-comité 21A: Accumulateurs a/calins et autres accumulateurs à étectrolyte non acide, du comité d'átudes 21 de la CEI: Accumulateurs. Le texte de cette norme est issu des documents sulvants: | FD45 | Rapport de vole | | |--------------|-----------------|--| | 21A/293/FDIS | 21A/305/RDV | | Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant about à l'approbation de cette norme. Cette publication a été rédigée selon les Directives ISO/CEI, Partie 3. Le comité a décidé que le contenu de cette publication ne sera pas modifié avant 2006-07. A cette date, la publication sera - reconduite; - supprimée; - remplacée par une édition révisée, ou - amendée. 61951-2 € IEC:2001 **-7** - ### INTERNATIONAL ELECTROTECHNICAL COMMISSION ### SECONDARY CELLS AND BATTERIES CONTAINING ALKALINE OR OTHER NON-ACID ELECTROLYTES -PORTABLE SEALED RECHARGEABLE SINGLE CELLS - ### Part 2: Nickel-metal hydride ### FOREWORD - 1) The IEC (Internetional Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes international Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Steedardization (ISO) in accordance with conditions determined by agreement between the lwo organizations. - 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an International consensus of opinion on the relevant subjects since each technical committee has representation from a liinterested National Committees. - 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense. - 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter. - 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards. - 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61951-2 has been prepared by subcommittee 21A: Secondary cells and batteries containing alkaline or other non-acid electrolytes, of IEC technical committee 21: Secondary calls and batteries. The text of this standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 21A/293/FDIS | 21A/305/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been orafted in accordance with the ISO/IEC Directives, Part 3. The committee has decided that the contents of this publication will remain unchanged until 2006-07. At this date, the publication will be - reconfirmed: - withdrawn: - replaced by a revised edition, or - amended. -8- 61951-2 @ CEI:2001 ### INTRODUCTION - 1. La présente Norme internationale constitue un regroupement de l'ensemble des normes relatives aux éléments d'accumulateurs portables, élanches, au nickel-métal hydrure, actuellement en vigueur: la CEI 61436, 1998; et la CEI 61608, 1999. Elle satisfait à l'objectif de réduire le nombre de normes en vigueur, et n'introduit pas de modifications techniques des normes d'origine. Si cette nouvelle norme venalt à être modifiée, les normes d'origine concernées seraient alors annulées. - 2 Depuis toujours, les fabricants et les utilisateurs d'accumulateurs alcalins on: utilisé un multiple du nombre exprimant la capacité de l'accumulateur pour définir la valeur du courant utilisé pour la charge ou la décharge de ces accumulateurs. Par exemple, pour un accumulateur de capacité assignée (C Ah) de 100 Ah, un courant de charge (ou de décharge) de 20 A est formulé C/5 A ou 0,2 C À. Ce mode d'expression a été utilisé antérieurement dans les normes d'accumulateurs alcalins. Il a été remarqué que cette méthode d'expression des courants est dimensionnellement incorrecte, car un multiple de la capecité (ampères-houres) est en ampères-houres et non en ampères comme requis pour les courants. Pour faire suite à ces remarques, la méthode décrite dans la CE! 61434 a été utilisée dans la présente norme. En résumé, la méthode précise que le courant de référence (I₁) est exprimé salon la méthode suivante: $I_t A = C_0 A h / 1 h$ οù C_n est la capacité assignée déclarée par le fabricant en ampères-heures (Ah), et n est le temps sur la base duquel la capacité assignée est déclarée, en heures (h). - 9 - ### INTRODUCTION - 1 This International Standard is an amalgamation of all currently valid standards for portable sealed nickel-metal hydride secondary single cells: IEC 61436, 1998 and IEC 61808, 1999, It complies with the objective to reduce the number of valid standards, and does not introduce technical modifications in the original standards. If, in the future, this standard is amended, the relevant original standards will be cancelled. - 2 Traditionally, the manufacturers and users of alkaline secondary cells and batteries have expressed the current used to charge and discharge these cells and
batteries as a multiple of the capacity. For example, a current of 20 A used to charge (or discharge) a cell with a rated capacity (C Ah) of 100 Ah would be expressed as C/5 A or 0,2 C A. This method of current designation has been used in earlier standards relating to alkaline secondary cells and batteries. Comments have been made, that this method of current designation is dimensionally incorrect in that a multiple of the capecity (empere-hours) will be in ampere-hours and not, as required for current, in emperes. As a result of these comments, the method described in IEC 61434 has been used in this standard. In brief, the method states that the reference test current (I_t) is expressed as: $I_t A = C_0 Ah/1 h$ where G_n is the rated capacity declared by the manufacturer in ampere-hours (Ah), and n is the time base in hours (h) for which the rated capacity is declared. - 10 - 61951-2 @ CEI:2001 # ACCUMULATEURS ALCALINS ET AUTRES ACCUMULATEURS A ELECTROLYTÉ NON ACIDE – ACCUMULATEURS INDIVIDUELS PORTABLES ETANCHES – Partie 2: Nickel-métal hydrure ### 1 Généralités ### 1.1 Domaine d'application La présente Norme internationale spécifie le marquage, la désignation, les dimensions, les essais et les prescriptions applicables aux petits éléments parallélépipédiques, aux éléments cylindriques et aux éléments boutons, individuels, portables, rechargeables, étanches, au nickel-métal hydrure, pouvant être utilisés dans toutes les prientations. ### 1.2 Références normatives Les documents normatifs suivants contiennant des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Pour les références datées, les amendements ultérieurs ou les révisions de ces publications ne s'appliquent pas. Toutefois, les parties prenantes aux accords fondés sur la présente Norme internationale sont invitées à rechercher le possibilité d'appliquer les éditions les plus récentes des normes indiquées ci-après. Pour les références non datées, la dernière édition du document normatif en référence s'applique. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur. CEI 60051 (toutes les parties). Appareils mesureurs électriques indicateurs analogiques à action directe et leurs accessoires CEI 60410, Plans et régles d'échantillonnage pour les contrôles par attributs CEI 80485, Voltmétres numériques et convertisseurs électroniques analogiques-numériques à courent continu ### 1.3 Définitions Pour les besoins de la présente Norme internationate, les définitions suivantes s'appliquent: ### 1.3.1 ### petit élément parallélépipédique élément de section rectangulaire dont la largeur et l'épalsseur ne dépassont pas 25 mm ### 1.3.2 ### élément cylindrique élément de section circulaire cont la hauteur hors tout est égale ou supérieure au diamètre hors tout -11- ### SECONDARY CELLS AND BATTERIES CONTAINING ALKALINE OR OTHER NON-ACID ELECTROLYTES -PORTABLE SEALED RECHARGEABLE SINGLE CELLS - Part 2: Nickel-metal hydride ### General ### Scope This International Standard specifies marking, ossignation, dimensions, tests and requirements for portable sealed nickel-metal hydride, small prismatic, cylindrical and button rechargeable single cells, suitable for use in any orientation. ### Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For deted references, subsequent amendments to, or revisions of, any of these publications do not apply. However parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. IEC 60051 (all parts), Direct acting indicating analogue electrical measuring instruments and their accessories IEC 60410. Sampling plans and procedures for inspection by attributes IEC 60485, Digital electronic d.c. voltmeters and d.c. electronic analogue-to-digital converters ### 1.3 Definitions For the purposes of this international Standard, the following definitions apply: ### 1.3.1 ### small prismatic cell cell in the form of a rectangular parallelepiped whose width and thickness dimensions are not more than 25 mm ### 1.3.2 cell of circular cross-section in which the overall height is equal to or greater than the overall diameter 61951-2 @ CEI:2001 #### 1.3.3 ### élément bouton élément de section circulaire dans lequel la hauteur totale est inférieure au diamètre total ### 1.3.4 ### élément au nickel-métal hydrure élément étanche contenant de l'hydroxyde de nickel dans l'électrode positive et un alliage absorbant l'hydrogène dans l'électrode négative ### 1.3.5 ### élément étanche élément dont l'étanchélté aux gaz et aux liquides reste assurée quand il fonctionne dans les limites de charge et de température spécifiées par le fabricant. L'élément est muni d'un dispositif de sécurité destiné à éviter toute pression inferne dangereusement élevée. L'élément ne requiert pas de complément d'électrolyte et est conçu pour fonctionner toute sa vie dans son état d'étanchéité initial NOTE. Il n'est toutefais pas exclu que l'élément au nicket-métal hydrore dégage des gaz vers la fin de sa vie en raison d'une accumulation d'hydrogène cans l'élément. #### 1.3.6 ### tension nominale la tension nominale d'un élément individuel rechargeable, élanche, au nickel-métal hydrure, est de 1,2 V ### 1.3.7 ### batterie portable élément conçu pour être utilisé dans une batterle facile à porter ### 1.3.8. ### capacité assignée quantité d'électricité C_SAh (ampères-heures) indiquée par le fabricant, qu'un élément individuel est capable de fournir au régime de décharge de référence de 0,2 l₁ A jusqu'à une tension finale de 1,0 V è +20 °C après charge, repos et décharge, dans les conditions spécifiées à l'article 4 ### 1.4 Tolérances de mesure au niveau des paramètres La précision globale des valeurs contrôlées ou mesurées, par rapport aux valeurs spécifiées ou réelles, doit respecter les tolérances suivantes: - a) ±1 % pour la tension; - b) ±1 % pour le courant: - c) ±1 % pour la capacité; - d) ±2 °C pour la température; - e) ±0,1 % pour le temps. Ces tolérances comprennent la précision combinée des appareils de mesure, des techniques de mesure utilisées et de toutes les autres sources d'erreur liées à la méthode d'essai. Pour aider au choix des appareils de mesure, consulter la série CEI 60051 pour les appareils analogiques et la CEI 60485 pour les appareils numériques. Les détails relatifs eux appareils utilisés doivent être fournis dans chaque rapport de résultats. 61951-2 © IEC:2001 **– 13** – ### 1.3.3 ### button cell a cell of circular cross-section in which the overall height is less than the overall diameter ### 1.3.4 ### nickel-metal hydride cell cell containing a nickel hydroxide compound for the positive electrode and a hydrogen absorbing alloy for the negative electrode. ### 1.3.5 ### sealed cell cell which remains closed and does not release either gas or liquid when operated within the limits of charge and temperature specified by the manufacturer. The cell is equipped with a safety device to prevent dangerously high internal pressure. The cell does not require addition to the electrolyte and is designed to operate during its life in its original sealed state NOTE. The nickel-metal hydride cell, however, may release gas towards the end of its life due to the accumulation. of hydrogen in the cell. ### 1.3.6 ### nominal voltage the nominal voltage of a sealed nickel-metal hydride rechargeable single cell is 1,2 V ### 1.3.7 ### portable battery a cell designed for use in an easily hand-carried battery ### 1.3,8 ### rated capacity quantity of electricity C₅Ah (ampere-hours) declared by the manufacturar which a single cell can deliver at the reference test current of 0,2 I_t A to a final voltage of 1,0 V at +20 °C after charging, storing and discharging under the conditions specified in clause 4 ### Parameter measurement tolerances The overall accuracy of controlled or measured values, relative to the specified or actual values, shall be within the following tolerances: - a) ±1 % for voltage; - b) ±1 % for current; - c) ±1 % for capacity; - d) ±2 °C for temperature; - e) ±0.1 % for time. These tolerances comprise the combined accuracy of the measuring instruments, the measurement techniques used, and all other sources of error in the test procedure. For assistance in selecting instrumentation, see the IEC 60051 series for analogue instruments and IEC 60485 for digital instruments. The details of the instrumentation used shall be provided in each report of results. Copyright by the International Electrotechnical Commission Tue Sep 20 12:38:53 2005 - 14 - 61951-2 © CEI:2001 ### 2 Désignation et marquage #### Désignation des éléments 2.1 ### 2.1.1 Petits éléments parallélépipédiques Les petits éléments individuels parallélépipéd ques rechargeables, étanches, au nickel-métal hydrure, goiver t être désignés par les lettres «HF» suivies de trois groupes de chiffres séparés chacun par un trait obliqué. - a) Les deux chiffres à gauche du premier trait oblique doivent indiquer la largeur maximale spécifiée pour l'élément, exprimée en millimètres, arrondie au nombre entier immédiatement superieur. - Les deux chiffres du milieu doivent indiquer l'épaisseur maximale spécifiée pour l'élément, exprimée en millimètres, arrondie au nombre entier immédiatement supérieur. - c) Les deux chiffres à droite du douxième trait oblique doivent indiquer la hauteur maximale spécifiée pour l'élément, exprimée en millimètres, arrondie au nombre entier immédiatement supérieur EXEMPLE: HF 18/07/49. #### 2.1.2 Eléments cylindríques Les éléments cylindriques rechargeables,
étanches, au nickel-métal hydrure, doivent être désignés par les lettres «HR» suivies de deux groupes de chiffres séparés par un trait oblique. - a) Les deux chiffres à gauche du trait oblique doivent indiquer le diamètre maximal spécifié pour l'élément, exprimé en millimètres, arrondi au nombre entier immédiatement supérieur. - b) Les deux chiffres à droite du trait oblique doivent indiquer la hauteur maximale spécifiée pour l'élément, exprimée en millimètres, arrondie au nombre entier immédiatement supérieur. EXEMPLE: HR 15/51. #### 2.1.3 Eléments boutons Les éléments individuels boutons rechargeables, étanches, au nickel-métal hydrure, doivent être désignés par les lettres «H8» suivies de deux groupes de chiffres séparés par un trait oblique. - a) Les trois chiffres à gauche du trait oblique doivent indiquer le diamètre maximal apécifié pour l'élément, exprimé en dixièmes de millimètres, arrondi au dixième immédiatement supérieur. - b) Les trois chiffres à droite du trait oblique doivent indiquer la hauteur maximale spécifiée oour l'élément, exprimée en dixièmes de millimètres, arrondie au dixième immédiatement supérieur. EXEMPLE: HB 116/054. #### Sorties électriques des éléments 2.2 La présente norme ne spécifie pas les sorties électriques des éléments individuels rechargeables, étanches, au nickel-métal hydrure. ~ 15 ~ ### Designation and marking ### 2.1 Gell designation ### 2.1.1 Small prismatic cells Sealed nickel-metat hydride small prismatic rechargeable single cells shall be designated by the letters "HF" followed by three groups of figures, each one separated by a solidus. - a) The two figures to the left of the first solidus shall indicate the meximum width specified for the cell, expressed in millimetres, rounded up to the next whole number. - b) The two figures in the middle shall indicate the maximum thickness specified for the cell, expressed in millimetres, rounded up to the next whole number. - c) The two figures to the right of the second solidus shall indicate the maximum height specified for the cell, expressed in millimetres, rounded up to the next whole number. EXAMPLE: HF 18/07/49. ### 2.1.2 Cylindrical cells Sealed nickel-metal hydride cylindrical rechargeable single cells shall be designated by the letters "HR" followed by two groups of figures separated by a solidus. - a) The two figures to the left of the solidus shall indicate the maximum diameter specified for the cell, expressed in millimetres, rounded up to the next whole number. - b) The two figures to the right of the solidus shall indicate the maximum height specified for the cell, expressed in millimetres, rounded up to the next whole number. EXAMPLE: HR 15/61. ### 2.1.3 Button cells Sealed nickel-metal hydride button rechargeable single cells shall be designated by the letters "HB" followed by two groups of figures separated by a solidus. - a) The three figures to the left of the solidus shall indicate the maximum diameter specified for the cell, expressed in tenths of millimetres, rounded up to the next whole number. - b) The three figures to the right of the solidus shall indicate the maximum height specified for the cell, expressed in tenths of millimetres, rounded up to the next whole number. EXAMPLE: HB 116/054. ### 2.2 Cell termination This standard does not specify terminations for sealed nickel metal-hydride rechargeable single cells. -16 - 61951-2 @ CEI:2001 #### 2.3 Marquage #### Petits éléments parallélépipédiques et éléments cylindriques 2.3.1 Sauf spécification différente fixée par l'acheteur, chaque élément fourni sans cosses doit comporter un marquage durable donnant les indications suivantes: - étanche, rechargeable, au nickel-métal hydrure ou Ni-MH; - désignation de l'élément conformément à 2.1; - capacité assignée; - tension nominale; - régime et temps de charge recommandés; - polarité; - date de fabrication (un code est admis); - nom ou marque d'identification du fabricant ou du fournisseur. de connexion no récessitant pas d'étiquettes s'ils tont partie intégrante d'une batterle. Dans ce cas, la batteris elle-même comporte la marquage indique c⊩cessus. NOTE En général, les éléments individuals rechargeables, étanches, au nickel-métal hydrore, munts de languettes #### 2.3.2 Eléments boutons Sauf spécification différente fixée par l'acheteur, chaque élément fourni sans cosses doit comporter au minimum un marquage durable donnant les indications sulvantes: - désignation de l'élément conforme à 2.1; - polarité; - date de fabrication (un code est admis); - nom ou marque d'identification du fabricant ou du fournisseur. Copyright by the International Electrotechnical Commission Tue Sep 20 12:38:53 2005 - 17 - ### 2.3 Marking ### 2.3.1 Small prismatic cells and cylindrical cells Except when otherwise required by the purchaser, each cell supplied without connections shall carry durable markings giving the following information: - sealed rechargeable nickel-metal hydride or Ni-MH; - cell designation as specified in 2.1; - rated capacity; - nominal voltage; - recommended charge rate and time; - polarity; - date of manufacture (which may be in code); - name or identification of manufacturer or supplier. NOTE. In general, sealed mickel-motal hydridu rechargoable single cells with connection tabs need no lebets if they form an integral part of a battery, in which case, the battery itself is marked with the above information. ### 2.3.2 Button cells Except when otherwise required by the purchaser, each button cell supplied without connection shall carry durable markings giving the following information: - cell designation as specified in 2.1; - polarity; - date of manufacture (which may be in code); - name or identification of manufacturer or supplier. Copyright by the International Electrotechnical Commission Tue Sep 20 12:38:54 2005 ### 3 Dimensions ### 3.1 Petits éléments parallélépipédiques et éléments cylindriques Figure 1 – Eléments cylindriques gainés Figure 2 – Petits éléments parallélápípédiques gainés Tableau 1 – Dimensions des petits éléments parallélépipédiques gainés | Désignation | Large | ur | Epais | așur | Hau | teur | |-------------|--------|------|-------|---------------|------|---------------| | | 20 | | mn | n | т | m | | HF 15/98/49 | 14.5 1 | | 7,4 |) | 48.2 |) | | MF 15/09/49 | 14,5 | ! [| 8.3 | 1 | 48,2 | | | HF 16/07/36 | 17,3 | . | 6.1 | l . | 35.7 | } 0. [| | HF 18/07/49 | 17.3 | | 6,1 | 0 -0,7 | 48,2 | -1.0 | | HF 15/09/49 | 17,3 | | 8,3 | | 48,2 | J | | HF 15/07/88 | :7.3 | -1.0 | 6,1 | J | 67,3 | ì | | HF 15/11/68 | 17.3 | | 10,7 | ń | 57,3 | | | HF 15/18/98 | 17,3 | | 17,3 | | 67,3 | } 0 | | HF 23/11/66 | 22,7 | | 10,7 |) a
 -1,D | 67,3 | -1,5 | | HF 23/16/68 | 22,7 | ' i | 14,5 | J " | 67.3 | J | 61951-2 © IEC:2001 **- 19 -** ### 3 Dimensions ### 3.1 Small prismatic calls and cylindrical cells Figure 1 – Jacketed cylindrical cells Figure 2 - Jacketed small prismatic cells Table 1 - Dimensions of jacketed small prismatic cells | Designation | Width | Thickness | Height | |-------------|-----------|-----------|----------| | | mm | mm | mm | | HF 15/08/49 | 14.5 | 7.4 | 48.2 | | HF 15/09/49 | 14,5 | 8,3 | 48,2 | | HF 18/07/36 | 17,3 | 6,1 | 35,7 } 0 | | HF 18/07/49 | 17.3 | 6,1 } 0 | 48,2 | | HF 18/09/49 | 17,3 0 | e,ŝ | 48,2 | | HF 16/07/86 | 17.3 -1.0 | €.1 | 67.3 | | HF 18/11/68 | 17,3 | 10,7 | 67,3 | | HF 18/18/68 | 17,3 | 17,3 | 67,3 } 0 | | HF 23/11/68 | 22.7 | 15.7 | 67,3 | | HF 23/15/66 | 22.7 | 14,5 | 67,3 | Tableau 2 - Dimensions des élémente cylindriques galnés | Désignation | Diametre | Hauteur | |-------------|-------------|-------------| | _ | mrr | mm | | HR 11/45 | 10.5 | 44,5 | | HR 15/43 | 14,5 | 43,0 | | HR 15/49 | 14,5 | 49,0 | | 7HR 15/51 | 14.5 C | 50,5 (-1,5 | | HR 17/29 | 170 7 0,7 | 28,5 | | HR 17/43 | 17.0 | 43.0 | | HR 17/50 | 17,0 | 50,0 } 0 | | HR 17/6/ | 17.0 | 67,U 7 -2.9 | | HR 23/43 | 23,0 🧻 | 43,0 } 0 | | UR 2€V47 | 25,8 - 0 | 47,N J | | HR 26/50 | 25,8] -1,0 | 50,0 } 0 | ### 3.2 Eléments boutons Les éléments doivent avoir la forme l'et/ou II. NOTE La polarité de la forme i n'est pas normalisée. Figure 3 – Eléments boutons Tableau 3 – Dimensions des éléments boutons | Désignation | | Diamètre hora tout
mm | | Heuteur hors lout
M⊡ | | | |-------------|------|--------------------------|-----|-------------------------|--|--| | HB 079/054 | 7,9 | } o | 5,4 | <u> </u> | | | | HB 118/054 | 11,6 | -1,0 | 5,4 | | | | | HB 156/064 | 15,6 | | 6,4 | | | | | HB 222/048 | 22.2 | | 4,8 | ļo | | | | HB 252/061 | 25,2 | } 0
+0.3 | 6,1 | -0,6 | | | | HB 252/065 | 25.2 | | 6.5 | | | | | FIB 252/076 | 25,2 | [| 7,8 | | | | | HB 347/060 | 34,7 | J | 6,0 | | | | | | | | | | | | 61951-2 © IEC:2001 **-21-** Table 2 - Dimensions of jacketed cylindrical cells | Designation | Diemeter | Height | | |-------------|-------------|-------------------------------------|--| | | mm | mm | | | HR 11/45 | 10.5 | 44.6 | | | HR 15/43 | 14,5 | 43,0 | | | HR *5/49 | 14,5 | 49.0 | | | 7HR 15/61 | 14,5 | 50,5 | | | HR • 7/29 | 17,0 -0,7 | 28,5 | | | HR 17/43 | 17,0 | 43,0 | | | HR 17/50 | 17,0 | 50,0 } ⁰ _{-2,0} | | | HR 17/67 | 17,0 | 67.0 7 | | | HR 23/43 | 23.0 | 43.0 -1,6 | | | HR 26/47 | 25,8 } 0 | 47,0 J | | | HR 26/50 | 25,8] -1.0 | 50,0 } 0 | | ### 3.2 Button cells Cetts shall be constructed as design I and/or II. NOTE. The polarity of design t is not standardized. Figure 3 - Button cells Table 3 - Dimensions of button cells | Designation | Overall di | ameter | Overall | height | |-------------|------------|--------|---------|-----------| | _ | r:m | ı | MI | 11 | | HB 079/054 | 7,9 | 0 | 5,4 | | | HB 118/054 | 1,6 | -1,5 | 5,4 | | | HB 156/064 | 15,6 | | 6.4 | | | HB 222/048 | 22,2 | | 4,8 | 0
-a,e | | HB 252/061 | 25,2 | 0 | 6,1 | ["," | | HB 252/065 | 25,2 | -0,3 | 6,5 | | | 118 252/078 | 25,2 | | 7,8 | | | HB 347/060 | 34,7 J | | 6,0 |] | | | | | | | 61951-2 @ CEI:2001 ### 4 Essais électriques Les courants de charge et de décharge mis en
œuvre pour les essais figurant dans cet article ainsi que dans l'article 5 doivent être basés sur la capacité assignée. - 22 - Pour tous les essais, à l'exception de celui spécifié en 4.7, aucune fuite d'électrolyte sous forme liquide ne doit être observée. ### 4.1 Mode de charge pour les essais Sauf spécification contraire de la présente norme, la charge pour les différents essais prévus doit être effectuée à une température ambiante de 20 °C \pm 5 °C et à un courant constant de 0,1 l_t A pendant 16 h. Avant la charge, l'élément doit avoir été déchargé à la 1empérature de 20 °C ± 5 °C, à un courant constant de 0,2 l. A jusqu'à une tension finale de 1,0 V. ### 4.2 Caractéristiques de décharge Les essais de décharge cl-après dolvent être effectués dans l'ordre indiqué. ### 4.2.1 Caractéristiques de décharge à 20 °C L'élément doit être chargé conformément à 4.1. Après la charge, l'élément doit être mis au repos, à une température ambiente de 20 °C \pm 5 °C, pendant au moins 1 h et au plus 4 n. L'élément doit être ensuite déchargé à une température ambiante de 20 °C ± 5 °C et comme spécifié dans les tableaux 4 ou 5. La durée de décharge ne doit pas être inférieure aux valeurs minimales spécifiées dans les tableaux 4 ou 5. Tableau 4 – Caractéristiques de décharge à 20 °C des petits éléments parallélépipédiques et des éléments cylindriques | Conditions de | décharge | | |-------------------------------|-------------------|---------------------------------------| | Velour du
courant constant | Tension
finale | Durée minimale de décharge
h / min | | A | ٧ | | | 0,2 I ₁ * | 1.0 | 5 h | | • 1, | 0.9 | 42 min | Cinq cycles sont admis pour cet essai. L'essai doit être ferminé é l'issue du premier cycle qui satisfait à l'exigence. **- 23** - ### 4 Electrical tests Charge and discharge currents for the tests in accordance with this clause and with clause 5 shall be based on the rated capacity. In all tests, with the exception of that specified in 4.7, no leakage of electrolyte in liquid form shall be observed. #### Charging procedure for test purposes 4.1 Unless otherwise stated in this standard, the charging procedure for test purposes shall be carned out in an ambient temperature of 20 °C ± 5 °C, at a constant current of 0.1 l. A. for 16 h. Prior to charging, the cell shall have been discharged at 20 °C ± 5 °C, at a constant current of 0,2 l. A, down to a final voltage of 1,0 V. ### 4.2 Discharge performance The following discharge tests shall be carried out in the sequence given. #### 4.2.1 Discharge performance at 20 °C The cell shall be charged in accordance with 4.1. After charging, the cell shall be stored in an ambient temperature of 20 °C \pm 5 °C, for not less than 1 h and not more than 4 h. The cell shall then be discharged in an ambient temperature of 20 °C ± 5 °C and as specified in table 4 or table 5. The duration of discharge shall be not less than the minimum specified in table 4 or table 5. Table 4 - Discharge performance at 20 °C for small prismetic cells and cylindrical cells | Discharge conditions | | | | |--------------------------|------------------|----------------------------|--| | Rate of constant current | Final
voltage | Minimum discharge duration | | | A | V | | | | C.2 1 ₍ p | 1.0 | 5 h | | | 1 I ₁ | 0,9 | 42 min | | of the first cycle which meets the requirement. Tableau 5 – Caractéristiques de décharge à 20 °C des éléments boutons - 24 - | Conditions de décharge | | | | |-------------------------------|-------------------|---------------------------------------|--| | Voleur du
courant constant | Tension
finale | Durée minimale de décharge
h / min | | | A | ٧ | | | | 0.2 l; ^u | 1,0 | 5 h | | | 1 1- | 0.8 | 35 min | | ### 4.2.2 Caractéristiques de décharge à 0 °C L'élément doit être chargé conformément à 4.1. Après la charge, l'élément doit être mis au repos, à une température ambiante de $0~^{\circ}\text{C} \pm 2~^{\circ}\text{C}$, pendant au moins 16~h et au plus 24~h. L'étément doit ensuite être déchargé à une température ambiante de 0 °C ± 2 °C et comme spécifié dans les tableaux 6 ou 7. La durée de décharge ne doit pas être inférieure aux valeurs minimales spécifiées dans les tableaux 6 ou 7. Tableau 6 – Caractéristiques de décharge à 0 °C des petits éléments parallélépipédiques et des éléments cylindriques | | Conditions de décharge Valeur du Tension courant constant finale | | |---------------------------------------|---|--| | Durée minimale de décharge
h / mln | | | | | | . A | | 4 h
36 min | 1.0
0,9 | 0.2 l _t
1 l _t | Tableau 7 – Caractéristiques de décharge à 0 °C des éléments boutons | Conditions de décharge | | | |--------------------------------|------------------------|---------------------------------------| | Valeur diu
courant constant | Tension
finale
V | Durée minimate de décharge
h / min | | 0.2 | 1,0 | 4 h | | 1 l; | 0,9 | 27 min | 61951-2 © IEC:2001 **- 25 -** Table 5 - Discharge performance at 20 °C for button cells | Discharge o | enoitions | | | |--------------------------|------------------|----------------------------|--| | Rate of constant current | Final
voltage | Minimum discharge duration | | | Α | V | | | | 0,2 l, e | 1,0 | 5 h | | | 1 l _t | û, 9 | 35 min | | Five cycles are permitted for this test. The test shall be terminated at the end of the first cycle which meets the requirement. #### 4.2.2 Discharge performance at 0 °C The cell shall be charged in accordance with 4.1. After charging, the cell shall be stored, in an ambient temperature of 0 °C ± 2 °C, for not less than 16 h and not more than 24 h The cell shall then be discharged in an ambient temperature of 0 °C \pm 2 °C and as specified in table 6 or table 7. The duration of discharge shall be not less than the minimum specified in table 6 or table 7. Table 6 - Discharge performance at 0 °C for small prismatic cells and cylindrical cells | Dischurge conditions | | | |----------------------------|-----------------------|------------------------------------| | Rate of constant current A | Final
voltage
V | Minimum discharge duration h / min | | 0 2 I _: | 1.0 | 47 | | 1 l, | 9,0 | 36 min | Table 7 - Discharge performance at 0 °C for button cells | Discharge conditions | | | |--------------------------|------------------|------------------------------------| | Rate of constant current | Final
voltage | Minimum discharge duration h / min | | A | V | | | 0,21 | 1,0 | 4 h | | 1 1, | 0,9 | ! 27 min | ### 4.3 Conservation de charge La conservation de charge doit être vérifiée par l'essai suivant. Après une charge effectuée conformément à 4.1, l'élément doit être mis au repos à circuit ouvert pendant 28 jours. La température ambiante moyenne doit être de 20 °C ± 2 °C. Il est admis que la température varie dans la plage de 20 °C ± 5 °C pendant de courtes durées au cours de la période de stockage. L'élément doit être déchargé dans les conditions spécifiées en 4.2.1 et au régline de 0,2 li A. La durée de décharge après un stockage de 28 jours à 20 °C ne doit pas être inférieure à - 3 h pour les petits éléments parallélépipéd ques et les éléments cylindriques; - 3 h 45 min pour les éléments boulons. ### 4.4 Endurance en cycles Avant l'essai d'endurance en cycles, l'élément doit être déchargé à $0.2~\mathrm{k}$ A jusqu'à une tension finale de $1.0~\mathrm{V}$. L'essai d'endurance doit alors être effectué à une température ambiante de 20 °C \pm 5 °C. Les charges et décharges doivent être effectuées à courant constant conformément aux conditions spécifiées dans le tableau 8. Pour éviter que la température du boîtier de l'élément pendant l'essai ne dépasse 35 °C, des précautions telles que la mise en œuvre d'air pulsé doivent être prises, si nécessaire. NOTE. La température recilie de l'élément, et non pas la température ambiante, détermine la caractérielique de l'élément. | Numéro
du cycle | Charge | Repos à l'étet
chargé | Décharge | |--------------------|-----------------------------------|--------------------------|---| | 1 | 0.1 l _t A pendent 16 h | Néant | 0,25 l _t A pendant 2 h 20 min ^t | | 2 - 48 | 0.25 l; A pendant 3 h 10 min | Néast | 0.25 (, A pendant 2 h 20 min ^b | | 49 | 0.25 l; A pendant 3 h 10 min | Néa⁻t | 0.25 l _t A jusqu'à 1,0 V | | 50 | 0.1 l _t A pendant 16 h | 1 h à 4 h | 0.2 l ₊ A Jusqu'à 1,0 V° | Tableau 8 – Endurance en cycles Les cycles 1 à 50 doivent être répétés jusqu'à ce que la curée de décharge d'un 50^{ème} cycle quelconque soit inférieure à 3 h. A ce moment, une nouvelle mesure de capacité doit être effectuée conformément à ce qui est spécifié pour le 50^{ème} cycle. L'essal d'endurance est considéré comme terminé lorsque deux cycles successifs de mesure de capacité conduisent à une durée de décharge inférieure à 3 h. Le nombre de cycles obtenu à la fin de l'essai ne doit pas être inférieur à 500. ### 4.5 Aptitude à la charge à tension constante La présente norme ne spécifie pas d'essais d'aptitude à la charge à tension constante. La charge à tension constante n'est pas recommandée. ² Il est admis de ménager un temps de repos à circuit ouvert suffisant après l'exécution du 30⁸⁷⁹ cycle de décharge, de manière à reprendre le 51⁹⁸⁹ cycle après un Interval e de deux semaines exactement. Il est permis d'edopter une procédure similaire aux 100⁹⁸⁹, 150⁹⁸⁹, 200⁹⁸⁹, 250⁹⁷⁹, 300⁹⁸⁹, 400⁹⁸⁹ et 450⁹⁸⁹ cycles. Si la tension en décharge de l'élément descend en dessous de 1.0 V. l'arrêt de la cécharge est autorisé. 61951-2 © IEC:2001 - 27 - ### 4.3 Charge (capacity) retention The charge retention shall be checked by the following test. After charging in accordance with 4.1, the cell shall be stored on open circuit for 28 days. The average amblent temperature shall be 20 $^{\circ}$ C \pm 2 $^{\circ}$ C. The temperature may be allowed to vary within the range of
20 °C ± 5 °C for short periods during the storage. The cells shall be discharged under the conditions specified in 4.2.1 at a rate of 0,2 l, A. The duration of discharge after 28 days storage at 20 °C shall be not less than: - 3 h for small prismatic cells and cylindrical cells; - 3 h 45 min for button cells. ### Endurance in cycles Before the endurance in cycles test, the cell shall be discharged at 0.2 I_t A to a final voltage of 1.0 V. The following endurance test shall then be carried out, in an ambient temperature of 20 °C ± 5 °C. Charge and discharge shall be carried out at constant current throughout, using the conditions specified in table 8. Precautions shall be taken to prevent the cell-case temperature from rising above 35 °C during the test, by providing a forced air draught if necessary. NOTE. Actual cell temperature, not the ambient temperature, determines cell performance. Table 8 - Endurance in cycles | Cycle
number | Charge | Stand in charged condition | Discharge | |-----------------|--------------------------------------|----------------------------|---| | 1 | 0,1 t, A for 16 h | None | 0,25 l, A for 2 h 20 min ⁶ | | 2 - 48 | 0,25 l _t A for 3 n 10 m n | None | 0,25 l ₁ A for 2 h 20 min ^o | | 49 | 0,25 l _c A for 3 h 10 m n | None | 0,25 l ₁ A to 1,3 V | | 60 | C,1 I _L A for 16 h | 1 h to 4 h | 0,2 l ₁ A to 1.0 V ^a | It is permissible to allow sufficient open-circuit rest time after the completion of discharge at cycle 50, so as to start cycle 51 at an exact two-week interval. A similar procedure may be adopted at cycles 100, 150, 200, 250, 300, 350, 400 and 450. Cycles 1 to 50 shall be repeated until the discharge duration on any 50th cycle becomes less than 3 h. At this stage, a repeat capacity measurement as specified for cycle 50 shell be carried out. The endurance test is considered complete when two successive capacity measurement cycles give a discharge duration of less than 3 h. The number of cycles obtained when the test is completed shall be not less than 500. ### Charge acceptance at constant voltage This standard does not specify a charge acceptance test at constant voltage. Charging at constant voltage is not recommended. If cell discharge voltage drops below 1.0 V. discharge may be discontinued. -28 - 61951-2 @ CEI:2001 ### 4.6 Surcharge L'aptitude de l'élément à supporter une surcharge doit être vérifiée par l'essai suivant. l 'élément doit être chargé à un courant constant de 0,1 l_t A, à une température ambiante de 20 °C \pm 5 °C, pandant 48 h. Après cette charge, l'élément doit être mis au repos. à une température ambiante de 20 °C \pm 5 °C, pendant au moins 1 h et au plus 4 h. L'élément doit ensuite être déchargé à 20 °C \pm 5 °C à un courant constant de 0,2 $I_{\rm l}$ A jusqu'à une tension finale de 1,0 V. La durée de la décharge de doit pas être inférieure à 5 h. ### 4.7 Fonctionnement du dispositif de sécurité | Mise en garde: | UNE TRES GRANDE PRUDENCE DOIT ETRE OBSERVEE LORS DE CET ESSAI I
LES ELEMENTS DOIVENT ETRE ESSAYES INDIVIDUELLEMENT ET IL CONVIENT DE
NOTER QUE LES ELEMENTS QUI N'ARRIVENT PAS A SATISFAIRE L'EXIGENCE | |----------------|--| | | PEUVENT ECLATER, MEME APRES COUPURE DU COURANT. POUR CETTE
RAISON, L'ESSAI DOIT ETRE EFFECTUE DANS UNE ENCEINTE DE PROJECTION. | Le présent essat doit être effectué pour vérifier que le dispositif de sécurité de l'élément permet l'échappement du gaz au cas où la pression interne excède une valeur critique. NOTE. Certains élaments boutens ne sont pas munis de systèmes de sécurité. Il convient de ne pas effectuer l'assal aur ce type d'élément. L'élément doit subir une décharge forcée à une température ambiante de 20 °C + 5 °C, à un courant constant de $0.2 I_t$ A, jusqu'à une tension finale de $0.7 I_t$ C. Le courant doit alors être augmenté jusqu'à 1 I_t A et la décharge forcée poursuivie, à la même température ambiante de 20 °C \pm 5 °C, pendant 60 mln. Pendant la décharge et à la fin de celle-ci, l'élément ne doit ni éclater, ni se fracturer. Une fuite d'électrolyte et la déformation de l'élément sont acceptables. ### 4.8 Stockage Avant l'essai de stockage, l'élément doit être chargé conformément à 4.1. L'élément doit être ensuite mis au repos à circuit ouvert, à une température moyenne de $20 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$ et une humidité relative de $65 \,\% \pm 20 \,\%$, pendant 12 mois. Au cours de la période de stockage, la température ambiante ne doit pas fluctuer au-delà des limites de 20 °C ± 10 °C. A l'issue de la période de stockage, l'élément doit être déchargé et chargé conformément à 4.1 et déchargé dans les conditions spécifiées en 4.2.1 à un courant constant de 0,2 l_i A. La durée de décharge après 12 mois de stockage à 20 °C ne don pas être inférieure à 4 h. Cinq cycles charge/décharge sont admis pour répondre à l'exigence relative à le capacité. NOTE. Quand des régles d'assurance de la qualité sont appliquées, un agrement provisoire peut être accordé, sous réserve d'obtention de résultets petisfaisants lors de la décharge après stockage. - 29 ~ ### 4.6 Overcharge The ability of the cell to withstand an overcharge shall be checked by the following test. The cell shall be charged at a constant current of 0.1 k A, in an ambient temperature of 20 °C \pm 5 °C for 48 h. After this charging operation, the cell shall be stored, in an ambient temperature of 20 °C \pm 5 °C, for not less than 1 h and not more than 4 h. The cell shall then be discharged at 20 °C \pm 5 °C at a constant current of 0,2 I_t A to a final voltage of 1,0 V. The duration of discharge shall be not less than 5 h. ### 4.7 Safety device operation | Warning: | EXTREME CAUTION SHALL BE EXERCISED WHEN CARRYING OUT THIS TEST! CELLS SHALL BE TESTED INDIVIDUALLY, AND IT SHOULD BE NOTED THAT CELLS FAILING TO MEET THE REQUIREMENT COULD DISRUPT WITH EXPLOSIVE FORCE EVEN AFTER THE CELL HAS BEEN DISCONNECTED FROM THE CHARGE CURRENT, FOR THIS REASON. | |----------|--| | | THE TEST SHALL BE CARRIED OUT IN A PROTECTIVE CHAMBER, | The following test shall be carried out in order to establish that the safety device of the cell will operate to allow the escape of gas when the internal pressure exceeds a critical value. NOTE. Some button cells do not have a safety vent. This test should not be performed on this type of cell The cell shall undergo a forced discharge in an ambient temperature of 20 °C \pm 5 °C, at a constant current of 0,2 l_t A, to a final voltage of 0 V. The current shall then be increased to 1 $I_{\rm t}$ A and the forced discharge continued in the same ambient temperature of 20 °C \pm 5 °C, for 60 min. During and at the end of this discharge, the cell shall not disrupt or burs:, Leakage of electrolyte and deformation of the cell are acceptable. ### 4.8 Storage Before the storage test, the cell shall be charged in accordance with 4.1. The cell shall then be stored on open circuit, at a mean temperature of 20 °C \pm 5 °C and a relative humidity of 65 % \pm 20 %, for 12 months During the storage period, the ambient temperature shall not, at any time, fluctuate beyond the limits of 20 °C \pm 10 °C. After completion of the storage period, the cell shall be discharged and charged in accordance with 4.1, and shall be discharged under the conditions specified in 4.2.1 at a constant current of $0.2 \, l_i \, A$. The duration of discharge after 12 months of storage at 20 °C shall be not less than 4 h. Five charge/discharge cycles are permitted to most the capacity requirement. NOTE. Where quality acceptance procedures are being followed, provisional exprovel may be agreed, pending satisfactory results on discharge after storage. #### 4.9 Régistance Interna La résistance interno des petits éléments individuels parallélépipédiques rechargeables, étanches, au nickel-métal hydrure, et des éléments individuels cylindriques rechargeables, étanches, au nickel-métal hydrure doit être vérifiée solt par la méthode du courant alternat f solt par la méthode du courant continu. S'il s'avère nécessaire de mesurer la résistance interne par les deux méthodes courant alternatif et courant continu sur le même élément, la méthode courant alternatif doit être réalisée la première et suivie de la méthode courant continu. Dans ce cas, il n'est pas nécessaire de décharger et de recharger l'élément entre les mesures en courant alternatif et en courant continu. Avent d'effectuer les mesures, l'élément doit être déchargé à 0.2 l_t A jusqu'à une tension finale de 1,0 V. L'élément do t être chargé conformément à 4.1. Après la charge, l'élément doit être mis au repos, à une température ambiante de 20 °C ± 5 °C pendant au moins 1 h et au plus 4 h. Les mesures de la résistance Interne doivent être effectuées à une température ambiante ce 20 °C ± 5 °C. #### Mesure de la résistance Interne en courant alternatif 4.9.1 La tension alternative efficace $U_{\mathbf{a}}$ doit être mesurée lorsqu'on applique à l'évément un courant alternatif efficace l_s à la fréquence de 1,0 kHz \pm 0,1 kHz pendant une période de 1 s \pm 5 s. La résistance interne en courant alternatif $R_{ m ac}$ est donnée par $$R_{\mathbf{a} \mathbf{b}} = \frac{U_{\mathbf{a}}}{I_{\mathbf{a}}} \left(\Omega \right)$$ οù U_a est la tension elternative efficace; est le courant alternatif efficace. NOTE 1. Le courant alternatif est choisi de façun à ce que la tension de crête reste inférieure à 20 mV. NOTE 2. Celle mél-ode
mesurera l'impédance qui, dans la gamme de fréquences spécifiés, est approximativement égale à la réalistance. #### 4.9.2 Mesure de la résistance interne en courant continu L'élément doit être déchargé à un courant constant d'Intensité $I_1.$ La tension en décharge $oldsymbol{U}_1$ doit être mesurée et enregistrée à la fin d'une période de décharge de 10 s. Le courant de décharge doit ensuite être immédiatement augmenté à la valeur t_2 et la tension en décharge U_2 correspondante doit être meaurée et enregistrée à la fin d'une période de décharge de 3 s. Toutes les mesures de tension doivent être effectuées aux sorties de l'élément, indépendamment des contacts utilisés pour conduire le courant. - 31 - ### 4.9 Internal resistance The internal resistance of a sealed nickel-metal hydride rechargeable small prismatic single cells and of a sealed nickel-metal hydride rechargeable cylindrical single cells shall be checked either by the alternating current (a.c.) or by the direct current (d.c.) method. Should the need arise for the internal resistance to be measured by both a.c. and d.c. methods on the same cell, then the a.c. method shall be used first, followed by the d.c. method. In that case, it is not necessary to discharge and charge the cell between conducting a.c. and d.c. methods. Prior to the measurements, the cell shall be discharged at 0,2 l_t A to a final voltage of 1,0 V. The cell shall be charged in accordance with 4.1. After charging, the cell shall be stored, in an ambient temperature of 20 °C \pm 5 °C, for not less than 1 h and not more than 4 h. The measurement of internal resistance shall be carried out in an emblent temperature of 20 $^{\circ}$ C \pm 5 $^{\circ}$ C. ### 4.9.1 Measurement of the Internal a.c. resistance The alternating r m.s. voltage $U_{\rm s}$, shall be measured when applying to the cell an alternating r.m.s. current, $I_{\rm s}$, at the frequency of 1,0 kHz ± 0,1 kHz for a period of 1 s to 5 s. The internal a.c. resistance, R_{ac} , is given by $$R_{\rm ac} = \frac{U_{\rm e}}{I_{\rm a}} (\Omega)$$ where $U_{\mathbf{a}}$ is the alternating r.m.s. voltage; t_a is the atternating r.m.s. current. NOTE 1. The atternating current should be selected such that the peak voltage stays below 20 mV. NOTE 2. This method will measure the impedance which, in the range of frequency specified, is approximately equal to the resistance. ### 4.9.2 Measurement of the internal d.c. resistance The cell shall be discharged at a constant current of value I_1 . At the end of a discharge period of 10 s, voltage U_1 during discharge shall be measured and recorded. The discharge current shall then be immediately increased to a constant value of I_2 and the corresponding voltage U_2 during discharge shall be measured and recorded at the end of a discharge period of 3 s. All voltage measurements shall be made at the terminals of the cell independently of contacts used to carry current -32 - 61951-2 @ CEI:2001 La résistance interne en courant continu $R_{ m dc}$ de l'élément do l'être calculée selon la formule suivante: $$R_{\rm GC} = \frac{U_1 - U_2}{I_2 - I_2} (\Omega)$$ ĠŪ 6 est un courant de décharge constant ce 0.2 l_t A; I₂ est un courant de décharge constant de 2 l_t A; $U_1,\,U_2$ sont les tensions appropriées mesurées en décharge. ### 5 Essais mécaniques A l'étude. ### 6 Conditions d'homologation et de réception ### 6.1 Homologation La séquence des essais d'homologation et les effectifs des échantillors sont précisés au tableau 9. Six groupes d'éléments, dénommés respectivement A. B. C. D. E et F. doivent être essayés. Le nombre total d'éléments nécessaires pour une homologation est de 27. Cette quantité comprend un élément supplémentaire destiné à la répétition d'un essai en cas d'incident survenu n'impliquant pas la responsabilité du fournisseur. Les essais doivent être conduits en séquence à l'intérieur de chaque groupe d'éléments. Tous les éléments sont soumis aux essais du groupe A. Ils sont ensuite répartis au hasard en cinq groupes, selon les effectifs des échantillons précisés au tableau 9. Le tableau 9 indique aussi le nombre d'éléments défectueux toléré par groupe et au total. Un élément est déclaré défectueux s'il ne satisfait pas à tout ou partie des exigences des essais d'un groupe. Tableau 9 – Séquence d'essais pour l'homologation | Groupe | Effectif · de | Article
ou | | | mbre d'élémente
fectueux toléré | | | |--------|--------------------------|---------------|---|------------|------------------------------------|--|--| | | l'échantilion paragraphe | | | Par groupe | Au total | | | | Α | 27 | 2.3 | Marquage | 0 | 3 | | | | | ļ | 3 | Dimensions | | | | | | | 1 | 4.2.1 | Decharga e 20 °C, & 3.2 I _L A | i | | | | | | | 4.2.1 | Décharge à 20 °C, à 1 t, A | | | | | | В | Ξ | 4.2.2 | Décharge à 3 °C, à 0,2 f, A | 1 | | | | | | | 4.2.2 | Decharge à 0 °C, à 1 I, A | | | | | | Ċ | 5 | 4.6 | Surcharge | 0 | | | | | | i | 4.7 | Fonctionnement ou diapositif
de sécurité | | | | | | D | - 5 | · 4.4 | Endurance en cycles | 1 | | | | | E | 6 | 4.3 | Conservation de charge | 1 | | | | | F | 5 | 4.B | Stockage | 1 | | | | | | • | 4.2.1 | Décharge à 20 °C, à 0,2 l _t A | | | | | The internal d.c. resistance, R_{dc} , of the cell shall be calculated using the following formula: $$R_{\rm dc} = \frac{U_1 - U_2}{I_2 - I_1} \; (\Omega)$$ where I_1 is a constant discharge current of 0,2 I_t A; I_2 is a constant discharge current of 2 I_1 A; U_1 , U_2 are the appropriate voltages measured during discharge. ### 5 Mechanical tests Under consideration. ### 6 Conditions for approval and acceptance ### 6.1 Type approval For type approval, the sequence of tests and sample sizes given in table 9 shall be used. Six groups of cells, denominated A, B, C, D, E and F respectively, shall be tested. The total number of cells required for type approval is 27. This total includes an extra cell, permitting a repeat test to cover any incident that may occur which is outside the supplier's responsibility. Tests shall be carried out in sequence within each group of cells. All cells are subjected to the test in group A, after which they are divided into five groups at random according to the sample sizes shown in table 9. The number of defective calls tolerated par group, and in total, is given in table 9. A cell is considered to be defective if it does not meet the requirements of all or part of the tests of a group. Table 9 - Sequence of tests for type approval | Group | Sample | Clause or | Tests | Number of cells to | | |-------|--------|-----------|---|--------------------|----------| | İ ' | # IZ+ | subčlause | | Per group | în total | | Α | 27 | 2.3 | Marking | 0 | 3 | | | | 3 | D mensions | | • | | | | 4.2-1 | Discharge at 20 °C, at 0.2 I _t A | | | | | | 4.2.1 | D-scharge at 20 °C, at 1 l _t A | | | | 3 | 5 | 4,2.2 | Discharge at 0 °C, at 0,2 l, A | 1 | 1 | | | | 4.2.2 | Discharge st 0 °C, at 1 I, A | | | | С | 5 | 4.6 | Overcharge | 0 | • | | | | 4.7 | Safety device operation | | I | | D | 5 | 4.4 | Endurance in cycles | 1 | 1 | | E | 6 | 4.3 | Charge (capacity) retention | 1 |] | | F | 5 | 4.8 | Sturage | 1 |] | | | 1 | 4.2.1 | Discharge at 20 °C, at 0,2 l _t A | | | 61951-2 © CE02001 ### 6.2 Conditions de réception Ces essais de réception sont applicables à des livraisons d'éléments individuels. Les règles d'échentillonnage doivent être établies conformément à la CEI 60410. Sauf accord contraire entre fournisseur et acheteur, les contrôles et les essais doivent être effectués en utilisant les niveaux de contrôle et NQA (niveau de qualité acceptable) recommandés au tableau 10. Tableau 10 - Séquence des essais conseillés pour la réception | | | | Recommendation | | | |--------|--------------------------|--|-----------------------|----------|--| | Groupe | Article ou
Paragraphe | Contrôles/essals | Nivsau de
contrôle | NQA
% | | | Α | | Contrôles visuels | <u> </u> | | | | | | sbsence ge dommaga mécanique | 11 | 4 | | | | !
Selon | sheance de corroston sur l'enve appe
st les sorties électriques |] " | 4 | | | | accord | - nombre, emplacement et tenue
des cosses de sortie | 83 | 1 | | | | İ | absence d'électrolyte liquice sur
l'enveloppe et les sorties électriques | ш | 0,65 | | | B | | Contró-es physiques | | | | | | 3 | - dimensions | 83 | 1 | | | | Catalogues | - masse | \$3 | 1 | | | | 2.3 | - marquage | \$3 | 1 | | | С | | Contrá es électriques | 1 | | | | | Selon accord | - tension à circuit ouvert et polarité | l II | C,85 | | | | 4,2,1 | décharge à 20 °C, à 0,2 l, A | 53 | 1 | | | | 421 | - décharge à 20 °C, à 1 l₁ À | \$3 | 1 | | NOTE: Pluşleurs défauts sur le même élément ne sont pas cumulés. Seul est pris en compte le défaut correspondant au NOA le plus faible. 61951-2 © IEC:2001 - 35 - #### 6.2 Batch acceptance These tests are applicable to deliveries of individual cells. The sampling procedure shall be established in accordance with IEC 80410, Unless otherwise agreed between supplier and purchaser, inspections and lests shall be performed using inspection levels and AQLs (acceptable quality level) recommended in table 10. Table 10 - Recommended test sequence for batch acceptance | Grou
P | Subclause | inspection/lests | Recomm | Recommendation | | | |-----------|------------|---|---------------------|----------------|--|--| | | | | inspection
level | AQL
% | | | | Α | | Visual inspection | 1 | | | | | | | - absence of machanical damage | l li | 4 | | | | | As | - absence of corresion on case
and terminals | l 11 | 4 | | | | | egroed
 | number, position and secure
littings of connection tabs
 | 53 | 1 | | | | | | absence of liquid electrolyte on case
and terminals | " | 0.65 | | | | В | | Physical Inspection | | • | | | | | 3 | - dimensions | . 83 | 1 | | | | | Type lists | - neight | 53 | 1 | | | | | 2.3 | - merking | 83 | 1 | | | | С | | Electrical inapaction | | | | | | | As agreed | - open-circuit voltage and polanty | l II | 0,65 | | | | | 4.2.1 | - discharge at 20 °C at 0,2 l, A | S3 | 1 | | | | | 4.2.1 | discharge at 20 °C at 1 l, A | 53 | 1 | | | NOTE. Two or more failures on a single cett are not cumulative. Only the failure corresponding to the lowest AQL is taken into consideration. ### ZTD.IEC 61951-2-ENGL 2001 🗰 4844891 0750464 824 🖿 - 36 - 61951-2 @ CEI:2001 ### Bibliographie CEI 60068-2-29, Essais d'anvironnement — Deuxième partie: Essais. Essai Eb et guide: Secousses CEI 61434, Accumulateurs alcalins et autres accumulateurs à électrolyte non acide – Guide pour l'expression des courents dans les normes d'accumulateurs alcalins Copyright by the International Electrotechnical Commission Tue Sep 20 12:38:55 2005 - 37 - ### **Bibliography** IEC 60068-2-29, Environmental testing - Part 2: Tests. Test Eb and guidance: Bump IEC 61434, Secondary cells and batteries containing alkeline or other non-acid electrolytes – Guide to the designation of current in alkaline secondary cell and battery standards ### Standards Survey The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you! Customer Service Centre (CSC) International Electrotechnical Commission 3, rue de Varembé 1211 Genève 20 Switzerland Of Fax to: IEC/CSC at +41 22 919 03 00 Thank you for your contribution to the standards-making process. A Prioritaire Nicht frankieren Ne pas affranchtr Non aftrancare No stamp required ### RÉPONSE PAYÉE SUISSE Customer Service Centre (CSC) International Electrotechnical Commission 3, rue de Varembé 1211 GENEVA 20 Switzerland | Q1 | Please report on ONE STANDARD and ONE STANDARD ONLY. Enter the exact number of the standard: (e.g. 60601-1-1) | | | If you ticked NOY AT ALL in Question 5 the reason is: (tick all that apply) | | | |----|--|--|----|---|----------|--| | | , • | | | standard is out of date | ū | | | | | | | standard is incomplete | Q | | | | | | | standard is too academic | | | | Q2 | | Please tell us in what capacity(ies) you | | | | | | | bought the standard (tick all that apply). | | | standard is too superficial
title is misleading | o o | | | | I am the/a: | | | I made the wrong choice | | | | | purchasing agent | ٦ | | other | | | | | li bra rian | _ | | | | | | | researcher | _ | | | | | | | design engineer | J | Q7 | Please assess the standard in th | ıA | | | | safety engineer | | Œ. | following categories, using | •/ | | | | testing engineer | L) | | the numbers: | | | | | marketing specialist | | | (1) unacceptable. | | | | | other | | | (2) below average, | | | | | Out of the same | | | (3) average,(4) above average. | | | | | | | | (5) exceptional, | | | | Q3 | i work for/in/as a:
(fick all that apply) | | | (6) not applicable | | | | | manufacturing | | | timeliness | | | | | consultant | u | | quality of writing | | | | | government | | | technical contents | | | | | _ | | | logic of arrangement of contents | | | | | test/certification facility | _ | | tables, charts, graphs, figures | | | | | public utility | <u> </u> | | other | •••••• | | | | education | G. | | | | | | | military | u | | | | | | | other | | Q٥ | I read/use the: (tick one) | | | | Q4 | This standard will be used for: | | | French text only | . | | | 44 | (tick all that apply) | | | English text only | ٦ | | | | 1 | | | both English and French texts | | | | | general reference | | | ever English and French lexis | _ | | | | product research | | | | | | | | product design/development | | | | | | | | specifications | | Q9 | Please share any comment on any | | | | | tendars | a | | aspect of the IEC that you would | like | | | | quality assessment | a | | us to know: | | | | | certification | ם | | | | | | | technical documentation | | | | | | | | thesis | | | | | | | | manufacturing 3 | | | | | | | | other | | | | | | | | WALLEY BY 1811 (1911) (1911) (1911) | | | | | | | | | | | | | | | Q5 | This standard meets my needs: (tick one) | | | | | | | | | | | | | | | | not at all | | | | | | | | nearly | _ | | | | | | | • | 0 | | | | | | | | | | | | | | | exactiv | _ | | | | | ### Enquête sur les normes La CEI ambitionne de vous offrir les mellieures normes possibles. Pour nous assurer que nous continuons à répondre à votre attente, nous avons besoin de quelques renseignements de votre part. Nous vous demandons simplement de consacrer un instant pour répondre au questionnaire ci-après et de nous le retourner par fax au +41 22 919 03 00 ou par courrier à l'adresse ci-dessous. Merçi ! Centre du Service Clientèle (CSC) Commission Electrotechnique Internationale 3, rue de Varembé 1211 Genève 20 Suisse ou Télécopie: CEI/CSC +41 22 919 03 00 Nous vous remercions de la contribution que vous voudrez bien apporter ainsi à la Normalisation Internationale. A Prioritaire Nicht frankleren Ne paş affrançhir Non affrancare No stamp required ### RÉPONSE PAYÉE SUISSE Centre du Service Clientèle (CSC) Commission Electrotechnique Internationale 3, rue de Varembé 1211 GENÈVE 20 Suisse | STD. IEC 61951-2-ENGL | 1003 | | 4844891 | 0750409 | 30P | | |-----------------------|------|--|---------|---------|-----|--| |-----------------------|------|--|---------|---------|-----|--| | Q1 | Veuillez ne mentionner qu'UNE SEULE
NORME et indiquer son numéro exact:
(ex. 60601-1-1) | | | Cette norme répond-elle à vos besoins:
(une seule réponse) | | | |----|---|----------|------------|---|-------|--| | | • | | | pas du tout | O. | | | | | ••••• | | à peu près | | | | | | | | assez bien | _ | | | | | | | parfaitement | ٦ | | | Q2 | En tant qu'achefeur de cette norme, | | | | | | | | quelle eat votre fonction?
(cochez tout ce qui convient)
de suis le/un: | | Q6 | Si vous avez répondu PAS DU TOU
Q5, c'est pour la/les raison(s) suiva
(cochez tout ce qui convient) | | | | | agent d'un service d'achat | G | | la norme a besoin d'être révisée | ū | | | | blbliothécaire | O | | la norme est incomplète | _ | | | | chercheur | | | la norme est trop théorique | _ | | | | ingénieur concepteur | J | | la norme est trop superficielle | 0 | | | | ingénieur sécurité | ı | | | _ | | | | ingénieur d'essais | J | | le titre est équivoque | ū | | | | spécialiste en marketing | J | | je n'ai pas fait le bon cholx | | | | | autre(s) | | | autre(s) | • | | | | | | Q 7 | Veuillez évaluer chacun des critère
dessous en utilisant les chiffres | s ci- | | | QS | Je travaille:
(cochez tout ce qui convient) | | | (1) inacceptable,
(2) au-dessous de la moyenne,
(3) moyen, | | | | | dans l'industrie | J | | (4) au-dessus de la moyenne. | | | | | comme consultant | ā | | (5) exceptionnel,(6) sans objet | | | | | pour un gouvernement | <u> </u> | | (c) sans objet | | | | | pour un organisme d'essais/ | | | publication en temps opportun | | | | | certification | G. | | qualité de la rédaction | | | | | dans un service public | 0 | | contenu technique | | | | | dans l'enseignement | Ūr | | disposition logique du contenu | | | | | comme militaire | u | | tableaux, diagrammes,
graphiques, | | | | | autre(s) | | | figures
autre(9) | | | | | | | Q8 | Je lis/utilise: (une seule réponse) | | | | Q4 | Cette norme sera utilisée pour/comm | 19 | | uniquement le texte français | (L) | | | | (cochez tout ce qui convient) | | | uniquement le texte anglais | | | | | ouvrage de référence | | | les textes anglais et trançais | ū | | | | une recherche de produit | O. | | les ravies enflisis et manésis | _ | | | | une étude/développement de produit | | | | | | | | des spécifications | a a | Qe | Veuillez nous faire part de vos | | | | | des soumissions | ā | ws | observations éventuelles sur la CEI | l: | | | | une évaluation de la qualité | | | | | | | | une certification | ō | | | | | | | une documentation technique | ū | | | ••••• | | | | une thèse | ū | | | | | | | la fabrication | | | | | | | | autre(s) | | | 261-1-1616-012111216-06111111-06111111-06111111-06111111 | ••••• | | | | - • • | | | | | | ISBN 2-8318-5595-0 ICS 29,220,30 Typeset and printed by the IEC Central Office GENEVA, SWITZERLAND